Gesetzt der Massenerhaltung

- die Summe der Massen der Ausgangsstoffe ist gleich der Masse der Reaktionsprodukte

Gesetz der multiplen Proportion

- wenn zwei Elemente mehr als eine Verbindung eingehen, so stehen ihre Massen in einem ganzzahligen Verhältnis

Mol

- die Stoffmengeneinheit Mol verknüpft die Masse Kilogramm und die atomare Masseneinheit u

Stoffmenge

- ist der Quotient der Stoffmenge n mit der molaren Masse eines Stoffes

Stoffmengenkonzentration

Quotient der Stoffmenge mit dem Volumen der Lösung

Atomaufbau

- eine chemische Bindung resultiert aus der Verknüpfung von 2 Elementen gleicher Atomart, indem die Stoffe in einem festen Mengenverhältnis gebunden sind
- ein Atom setzt sich zusammen aus einem sehr kleinen positiv geladenem Atomkern und einer negativ geladenen Elektronenwolke

Orbitale

- sind Aufenthaltsräume der Elektronen
- diese sind nicht scharf begrenzt, geben aber den Raum an, wo das Elektron mit größter Wahrscheinlichkeit zu finden ist
- bei s Zuständen kugelsymmetrisch
- bei p Zuständen rotationssymmetrisch
- bei d und f- Elektronen komplizierte Gestalt

Alpha Strahlung besteht aus positiv geladenen Heliumatomen He 2+

Beta Strahlung besteht aus Elektonen

Gamma Strahlung ist magnetische Strahlung

Atomhülle

- in ihr bewegen sich die Elektronen ohne Energie zu verlieren
- Position entsprechend ihres Energieniveaus in Räumen größter Aufenthaltswahrscheinlichkeit (Orbitale)

Hauptgruppenelemente

- nicht und unedle Metalle
- Auffüllung der s und p Elektronen der äußeren Schale

äußere Hülle wird besetzt

Nebengruppenelemente

- Metalle (edle, unedle)
- Auffüllung der d Elektronen der zweitäußeren Schale
- Chemische Bindung s und d Elektronen
- Meist viele Oxidationsstufen
- Neigung zur Komplexbildung

Nebenquantenzahlen

- 0 = s Elektronen
- 1 = p Elektronen
- 2 = d Elektronen
- 3 = f Elektronen

Hundsche Regel

 die Orbitale einer Unterschale werden so besetzt, daß die Anzahl der Elektronen mit gleicher Spinrichtung maximal wird

Pauli Prinzip

- ein Atom darf kein Elektron enthalten, daß in allen vier Quantenzahlen gleich ist

<u>Ionisierungenergie</u>

- ist die Energie, welche aufgebracht werden muß um ein Elektron vollständig zu lösen aus einem Atom
- bei einem Unteschied der Elektronegativität > 1,7
- meist zwischen ausgeprägt metallischen Elementen links im PSE und nichtmetallischen Elementen rechts im PSE

Elektonegativität

- ist das Maß für die Fähigkeit eines Atoms das bindende Elektronenpaar in einer Atombindung an sich zu ziehen

Metallische Bindungen

- in Metallgittern Gitterplätze durch positive Metallionen besetzt
- Valenzatome nicht an bestimmte Atome gebunden

Atombindung

- tritt auf, wenn sich vorwiegend nichtmetallische Stoffe binden
- das bindende Elektronenpaar gehört beiden Elementen
- Elektronegativität < 1,7
- Beispiel: Wasserstoffmolekühl

Sigma Bindung

- Überlappung der s-, p-, d Orbitale längs der Molekühlachse z
- s-s, s-p, s-d. p-p, p-d, d-d

Pi Bindungen

- Überlappung der p und d Orbitale parallel zur Molekühlachse z
- p-p, p-d, d-d
- leicht verschiebbar, lassen sich leicht in Einzelelektronen aufspalten, deshalb geben solche Verbindungen Additionsreaktionen

Hybridisierung

- Bildung von vier Hybbridorbitalen aus einem s- und drei p Orbitalen

- SP3 Hybridorbitale

- Eigenschaften: gleiche Energie

gleiche Geometrie

neue räumliche Orientierung große Elektronenwolke stärkere Überlappung

stärkere Bindung (Gewinn an Bindungsenergie)

- die Ursache für die Atombindung ist die maximale Überlappung der beteiligten Orbitale zu Molekühlorbitalen und somit zu einem Energie ärmeren Zustand.
- Der Energiegewinn ist gleich der Bindungsenergie
- Zum erreichen dieses Zustandes verändern sich die Orbitale durch Hybridisierung
- Ursache hierführ sind der Energieausgleich und die Möglichkeit der Abgabe maximaler Bindungsenergie infolge maximaler Überlappung

Partialladung

- tatsächliche Teilladung in einer polaren Atombindung, entsteht durch unterschiedliche Elektronegativität (Stoff mit größerer Elektronegativität δ+)

Ideale Gase

- kein eigenes Volumen
- keien Wechselwirkungskräfte
- geringer Druck
- hohe Temperarur

sind charakteristich für ideale Gase

Gitterbausteine	Atome	Molekühle	Ionen	Atomrümpfe
Bindungsart	Atombindung	Van der Waals	Ionenbindung	Metallbindung
	(Verknüpfung von	Bindungen	(Verknüpfung von	(Verknüpfung von
	Atomen)	(Verknüpfung von	Kationen und	Atomrümpfen
		Molekühlen)	Anionen)	Durch vagabund.
				Valenzelektronen
Stoffeigenschaften	Hoher Schmelzpkt	Niedriger	Hoher Schmelzpht	Duktil bis spröde
	Hart	Schmelzpunkt	Salzartig	Metall. Glänzend
	Spröde	Weich	spröde	Elektr. Leitend
	Glasiges Aussehe			Wärmeleitend

Van der Wallsche Verbindungen

- Kräfte in Molekühlgittern bei festem Aggregatzustand

<u>Valenzbindungen</u>

- wird durch Elektronen mit paarweise entgegengesetzter Spinrichtung hervorgerufen
- Elektonen bilden Elektronenhülle, die zwei oder mehrere Atomrümpfe umschließt
 - Valenzstrichformel
 - Kennzeichnung der gebundenen Elektronen Beispiele: HCL H CL; H20 H O
 - H; CO2 O = C = O

Spinrichtung

- links oder rechts drehend

Enthalpie

zusammenfassung der inneren Energie und der Volumenarbeit bei isobaren Vorgängen (Veränderung des Volumens und der Energie duch Wärme)

Reaktionsenthalpie HR

- die Reaktionswärme bei kostantem Druck in chemischer Reaktion

Reaktion 1. Ordnnung

- monomolekulare Reaktion 2H - H 2

Reaktion 2. Ordnung

- bimolekulare Reaktion 2I + H 2 - 2HI

Reaktion 3. Ordnung

- bimolekular? H_2 + I_2 - 2HI

Satz Von Hess

 bei gleichem Anfangs- und Endzustand ist die Reaktionesenthalpie für jeden Reaktionsweg gleich groß

Standartbildungsenthalpie H_B

- ist Reaktionsenthalpie bei 25°C für Elemente Standartbildungsenthalpie = 0

Berechnung Reaktionsenthalpie

CuO
$$\Delta H_B = -138 \text{ kJ/mol}$$

 H_2 O $\Delta H_B = -286 \text{ kJ/mol}$

 $H_R = 148 \text{ kJ/mol}$

Massenwirkungsgesetz

- Verhältnis der Gleichgewichtskonzentrationen
- $K_C = \frac{C^2 NH_3}{CN_2 * CH_2^3}$
 - diese Formel gilt für Konzentrationen, wobei die Hochzahlen sich aus der Koeffizientenzahl vor dem Element ergeben $N_2 + 3H_2 \bullet 2NH_3$
- bei Gasen anstatt Kozentration C wird Druck p eingesetzt

Verschiebung des Gleichgewichtes

- übt man auf ein System einen Zwang aus, so verschiebt sich das Gleichgewicht so, das es dem Zwang ausweicht
- Bedingung: Zwang, Druck, Temperatur
- Bei Erhöhung der Konzentration der Ausgangsstoffe muß sich Konzentration der Reaktionsprodukte ebenfalls erhöhen um Gleichgewicht zu halten

- Bei Druckerhöhung geht es um Volumenänderung: bei Erhöhung des Druckes in Richtung Endstoffe, verringert sich der Druck bei den Ausgangsstoffen
- Temperatur bedeutet endo- exotherm

Katalysatoren

- Stoffe die Reaktionsgeschwindigkeit erhöhen, werden am Ende verbraucht
- In der Gesamtreaktionsgleichung erscheinen sie nicht
- Das chemische Gleichgewicht wird nicht verschoben
- Negative Katalysatoren verlangsamen die Reaktionsgleichung

<u>Säure</u>

- ist in der Lage an das Wasser Protonen abzugeben
- die ein Elektronenpaar aufnehmen können
- Elektronenpaarakzeptoren

Base

- ist in der Lage Protonen vom Wasser aufzunehmen
- die freies Elektronenpaar besitzen
- Elektronenpaardonatoren

PH - Wert

- ist negative Logarithmus zum Zahlenwert der H₃O Konzentration

<u>Pufferlösungen</u>

 Sind Lösungen die trotz starkem zugeben von Säuren oder Basen ihren PH – Wert nur wenig ändern