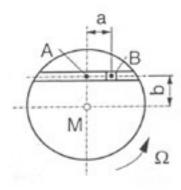
PRÜFUNG

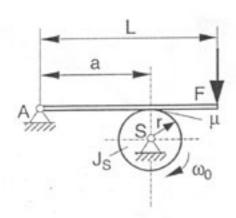

KINEMATIK / KINETIK (MB)

9. August 2002

Name:	
Vorname:	
PrüfIdent. Nr.:	
Matr -Nr :	

Aufgabe	Punkte	Sign.
1		
2	1	
3		
4		
Gesamt		
Note		

Aufgabe

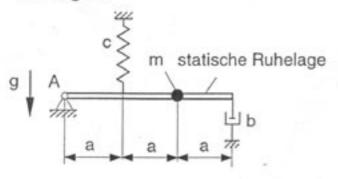


Eine Scheibe dreht sich um M mit konstanter Drehzahl n_s =24 min⁻¹. In der Führungsnut wird ein Gleitstein von A in Richtung B bewegt. Im Punkt B hat er eine Relativgeschwindigkeit von $0.4 \frac{m}{s}$.

Gegeben:
$$n_s = 24 \frac{1}{min}$$
, $a = 18,5 \text{ cm}$; $b = 10 \text{ cm}$; $v_{rel} = 0,4 \frac{m}{s}$

Gesucht: Betrag der Absolutgeschwindigkeit des Gleitsteines in B.

2. Aufgabe

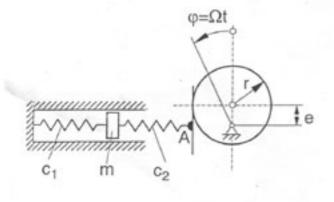

Eine Trommel (Radius r, Massenträgheitsmoment J_S) dreht sich anfangs mit der Winkelgeschwindigkeit ω_0 . Sie wird durch einen masselosen Bremshebel (Reibzahl μ) zum Stillstand gebracht.

Wieviel Umdrehungen macht die Trommel während des Bremsvorganges, wenn die Bremskraft F konstant bleibt.

Gegeben: $a; L; \mu; F; J_S; \omega_0; r$

Gesucht: N (Anzahl der Umdrehungen bis zu Stillstand)

Aufgabe


Ein masseloser, starrer Stab mit Feder c und Dämpfung b trägt eine Masse m und führt um A Schwingungen kleiner Amplitude φ aus. Geschwindigkeitsproportionale Dämpfung liegt vor.

Gegeben: m;c;a;b

Gesucht:

- a) Stellen Sie die Schwingungsdifferentialgleichung auf.
- b) Bestimmen Sie die Eigenkreisfrequenzen ω₀ des ungedämpften und ωD des gedämpften Systems.
- c) Wie groß ist die Abklingkonstante δ?
- d) Welche Bedingung muß die Dämpfungskonstante b erfüllen, damit schwache Dämpfung vorliegt?
- e) Geben Sie die Lösung der Bewegungsgleichung an für die Anfangsbedingungen: t = 0: $\phi = 0$; $\dot{\phi} = \dot{\phi}_0$.

4. Aufgabe

Eine Masse m wird durch eine Feder c1 gehalten und über eine zweite Feder co von einer rotierenden Exzenterscheibe zu Schwingungen angeregt. Das Federende A liegt stets an der glatten Exzenterscheibe (reibungsfrei) an.

Gegeben: c₁; c₂; m; r; e

- Gesucht: 1. Schwingungsgleichung für die Masse m.
 - Eigenkreisfrequenz ω₀ der Masse m.
 - Wie groß muß die konstante Erregerkreisfrequenz Ω der Scheibe sein, damit der Maximalausschlag der Masse im eingeschwungenen Zustand gleich 3e ist?