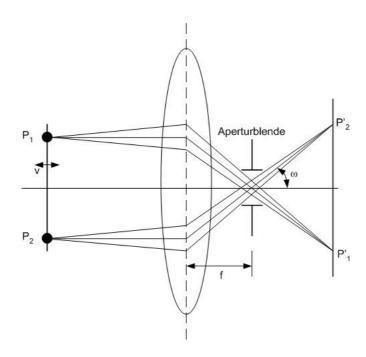
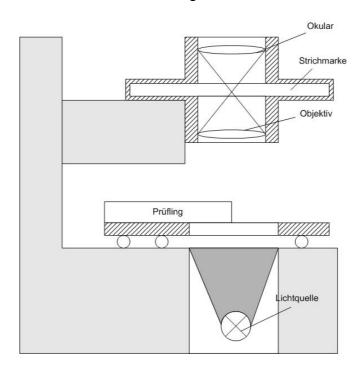
Praktikum Fertigungsmesstechnik Werkzeugmikroskop

- Anwendungsgebiete: - Längenmessung an den verschiedensten Prüflingen


(Abstands-, Durchmesser, Radienmessung)

- Gewindemessung (alle Bestimmgrößen an

Außengewinden und Werkzeugen zur


Gewindeherstellung)

- Winkelmessung
- Profilprüfung (Formprüfung)
- Zweikoordinaten Messgeräte mit optischer oder mechanischer Antastung
 - Zweikoordinaten: die Gestalt der WST wird mit Geraden, Kreisen, Winkeln oder Punkten beschreiben und deren Zuordnung
 - diese Formelemente werden optisch oder mechanisch angetastet
 - diese Messgeräte besitzen ein Längenmeßsystem (orthogonale Messachse) (kartesisches Koordinatensystem)
 - die wahre Umrandungskontur des Messkörpers wird punktweise angetastet und daraus ein numerisches Bild erzeugt
- bei Werkzeugmikroskopen beruht die Messung auf der Verschiebung des Messobjektes auf einem Koordinatenmesstisch und optischer Antastung des vergrößerten Bildes (Vergrößerung 10 bis 100 fach)
- Verstellung des Messtisches über Meßschraube (Spindel) mit analoger oder digitaler Anzeige
- Gesamtvergrößerung ergibt sich aus dem Produkt der Okular- und Objektivvergrößerung
- zur Vermeidung von Messabweichungen durch unvollständige Scharfstellung besitzen WEMI einen telezentrischen Strahlengang
- telezentrisch:

- die Aperturblende wird in die Brennebene des Strahlengangs verlagert
- dies bedeutet, dass sämtliche Strahlenbündel die optische Achse unter einem fast konstanten Winkel ω (Feldwinkel) schneiden

- das Komperatorprinzip (Abbesche Prinzip) wird nicht eingehalten
- Messbereich bei kleine WEMI 50*50 mm, große WEMI 2000*500 mm
- Längenmessunsicherheit i.a. > 2 μm
- der kleinste noch wahrnehmbare Punktabstand e ist von der Lichtwellenlänge λ und der numerischer Apertur A (Maß für die Leistung eines optischen Systems) abhängig e= $\lambda/2A$
- eine Steigerung der Auflösung kann mit kleinerer Wellenlänge und größerer Apertur durch konfokale (einen oder zwei gemeinsame Brennpunkte) Lasermikroskope mit Lichtquellen im ultravioletten bis infraroten Bereich oder durch Elektronenstrahlmikroskopen erfolgen
- zur Anpassung an Messaufgabe dienen Okulare und verschieden Strichplatten
 - Messokulare: zur Ermittlung von Lage und Größe im Zwischenbild
 - Winkelmessokulare: drehbare Strichplatte mit Strichkreuzen und Parallelstrichen
 - Revolverokulare: drehbare Glasplatten (Gewinde, Zahnformen...)
 - Doppelbildokulare: zur Messung von Bohrungsmitten-, Strichfigurenabständen
 - Spiralmikroskop (-okular): mit drehbaren Strichplatten und doppelliniger Ablesespirale
- Bestandteile WEMI:
- Unterteil
- Koordinatenmesstisch
- Ständer
- Tragarm
- Visiereinrichtung

- die x und y Koordinaten werden mit Einbaumessschrauben gemessen, deren Messbereich = 25 mm ist und der Skalierungsteilung = 10 μm ist.

Einfaches Schattenbildverfahren

- der Prüfling wird von unten telezentrisch beleuchtet
- Mikroskop liefert ein reelles Zwischenbild, das Schattenbild, das durch ein Okular betrachtet wird
- In der Zwischenbildebene liegen Visiermarken, die ein meßkraftfrei optische Antastung ermöglichen

Doppelbildverfahren

- durch das Doppelbildokular (Kombination aus mehreren Dachkantenprismen) werden zwei gleich große zentralsymetrische Bilder des Prüfling erzeugt, wenn die optische Achse nicht mit der Achse der Figur übereinstimmt
- durch Verschiebung des Messtisches werden die beiden Bilder in Deckung miteinander gebracht, somit lässt sich die Bohrungsmitte bestimmen

Kontaktverfahren

 der Prüfling wird mit einem Messhebel angetastet und die Lage der Antastkugel optisch abgebildet

Konfokale Laser-Scanning-Mikroskopie (LSM)

- zur Messung und Darstellung von Mikrostrukturen
- nur das im Brennpunkt der Objektivlinse reflektierte Licht wird zur Abbildung genutzt, während alle diffus reflektierten Lichtstrahlen von einer Lochblende gefiltert werden
- man erhält ein scharfes Bild von allen Punkten, welche sich beim abscannen in der Focusebene befinden